Numerical Modelling in
Geosciences

Lecture 5
Numerical solution of PDEs

Finite difference method

First derivative in space of function f(x) (1D case):

Analytical vs Numerical

i(x) = 4x - x° < 10* f(x)' = 4 - 3°x2
T T 05 T T

Example:

oT AT T,-T
ox Ax x,-x

The same is valid for first
derivative in time:

oT AT T™-T'
or At At

How to apply finite differences

1) Define an Eulerian grid of nodal points
2) Assign input field variables to the nodes
3) Apply PDEs and boundary conditions to each nodal point

4) Solve the system of equations to get output field variables

1) Define an Eulerian grid of nodal point

The grid can be uniform (equal distance between nodal points) or non-uniform, but points
need to be orthogonal. Lines connecting points are fictitious.

With this process we subdivide the continuous medium into discrete parts.

2D grid
3 4 5
j -
1 D grld (D“ (Dl.z q)m D, D X
& o7 1 5 9 13 17 |
(a_;lg)z (a xqz) (Dz,l (Dzz (Dz.s (Dz,4 D, y
5 (g_cb) & (agcp)a = : (3_@) o 2 6 10 |14 |18
X X X

[f: ® . ﬂz ® 53 © - @‘ Q, O, D, D, D,

X, Xa X, Xg X, Xc X, 3 7 11 15 19
—X (D“ ¢4 (1)4,3 D, , (I)-l<

4 8 12 16 20

2D geometrical indexing:
Phi(3,4)

2D global indexing:
gi=i+N,*(-1)

Phi(15)

2) Assign input field variables to the nodes

In the case of Poisson’s equation:

2 2 2
A¢=a?+a?+a?=f
ox~ Jdy" 0z

we need to assign function f to each node.

3a) Apply PDEs and boundary conditions
to each nodal point.

In the case of 1D Poisson’s equation: 1D grid
2 2

(52) (5°)

2 2 X</
A ® _F o () o () o () e
=—= i ——® ——l
ox X, X, X, Xs X, X; X,

—X

Nodes 1 and 4: basic boundary nodes where boundary conditions are assigned

Nodes 2 and 3: basic internal nodes where Poisson equation is applied, and field variable
Phi and its second derivative are defined.

Nodes A, B and C: additional nodes where first derivative of field variable Phi is defined
The number of indipendent linear equations must be equal to the number of unknowns:

equations = # grid points * # of field variables = 4

3a) Apply PDEs and boundary conditions
to each nodal point.

In the case of 2D Poisson’s equation: 2D grid
j! 2 3 4 5
2 2 .
A@ — a @ + a @ —_ f Il_ q)l.l (Dl.z (Dm ol.-l (DI.S X
a 2 a 2 1 5 9 13 17|
X y (Dz,l D,, @, q)z,4 D, 5 y
& 76 |10 |17 |18
Nodes (1,j; 4,j; i,1; i,5): basic boundary nodes 3] QP @y B O,
" : 3 7 |11 |15 |19
where boundary conditions are assigned o) o o o) o
4- 4 8§ 12 16 20
All the others are basic internal nodes where 2D global indexing:
Poisson equation is applied, and the field variable gi=i+N;*(-1)

Phi and its second derivative are defined.

equations = # grid points * # of field variables = 20

Boundary conditions

Dirichlet BC: specify the value of the solution on the boundary nodes

Example: (I)1 =() (aq))
ml 0x mz
} ® > x
N BC: specify the value of the derivati 5 X2
eumann BC: specify the value of the derivative Ax
of the solution on the boundary nodes

Example: it AA()IC)_42=>(D =D, -42-Ax

0x

Very important in finite difference method:

For each output (unknown) field variable (e.g., P, T, v,, v,, etc.), we must assign a Dirichlet

v Yy Yy

BC to at least 1 node. This is required in order to compute finite differences from an initial
value.

3b) Apply PDEs and boundary conditions
to each nodal point.

Matrix L for 2D grid: 31 x 31 nodes

Build matrices and vectors

100

200

A*x = b (standard notation)
or in Gerya'’s book:
L*S = R (Left matrix*Solution = Right vector)

700

800

L is a n x n sparse matrix with coefficients
R is a n x 1 vector with the right-hand sides
S is a n x 1 vector with the unknowns .

330 &y

340

350

LS+ LS, + L3S +..+ L, S, ,+ L ,S, =R)
L.’..lSl +I/_1‘2SZ +L2.3SS +"'+Ll"-lsn-l +L’..H’Sn = RZ 370

Ly 3S1+Lyy2Sy+ Ly 383+ .+ Ly 5y Sy + Ly 4 Sy = Ry i i 3o % T

nz=4325

LS +L, S+ L3S +..+L, 1S, +L,,S, =R, MatLab command: spy(L)

na-1"n

4) Solve the system of linear equations

A*x =D
or in Gerya’s book:
L*S =R

1) iterative (Jacobi, Gauss-Siedel iteration):
define initial guess S;cuent for each unknown,

-

LS +L,3Sy+ L, 385 +..+ L, 45, ,,+ L, ,5, =R,

LS+ L3Sy + L3Sy +. .+ Ly 1S,y + 0,5, =Ry

Ly Sy + Ly 38, + Ly 383+ + Ly p 1Sy + Ln S, = Ry

LySi+LyyaSy + Ly 383 + o+ Ly p 1Sy + Ly nSa = Ry
Two methods for solving a system of equations: .

then find residual AR,.
Update solution for each unknown S;"¢¥ by

means of relaxation parameter 0<39,<1.

In Jacobi > simultaneous update at the end of the cycle

In Gauss-Siedel->update during the cycle

AR =R =L S{™ =Ly S5 7 = L3S = = Ly S — LSy

AR, =R, - Luslmm" - l'z.zsznnm _Lzssgmm —...—L, n-lS:fl’m - Lz.ns;?ﬂm

ARn—l = R'n—l _Ln—uslan - _Ln—l.zsz _Ln-l.ssgmw _"'_Ln—l.n—lsgm =L, S5

n-1n"n

AR, = R, = L, 5™ L, S5 ~ L, 57—~ L, ST ~ L, 55

= nnTn

E—

Iterate while
|AR|>req. accuracy

—|

S i it
1

spoe = g o 6, A%

2

new _ qoorent AR,..]
Sn—l - Sn-l + an-l
‘n-1.n-1

S,’,"'"=S,?‘”"+6,,AR" .

4) Solve the system of linear equations

Two methods for solving a system of equations:

1) iterative (Jacobi, Gauss-Siedel iteration): because of the small memory consumption the
relatively small amount of operations, iterative solvers are commonly used for solving large
(3D) problems. However, the accuracy of the solution may be low and convergence may be
slow because of large differences in matrix coefficients (high condition number) and residuals at
wavelength longer than grid spacing.

Matrix preconditioning reduces the condition number and improve the convergence (APP-'b=x).

Otherwise...
2D Poisson equation (100 x 100)

50 iterations

] I U
) / | S I L=
| 1 ' ';
W\ I | <
} o
A BA L !
|| “o00s
P 0o
100 100
J & 0 @

initial state

residuals
& _ .
esidual

5 iterations

| (
{
]
) .
50 . %
o
- 004
02
= om
0 3 ,
§ 0
- 204
100 100
0 "m
5 0
[

100 iterations

residuals

£0

50
0

20 iterations 400 iterations

0010
e 4
= 00s
=
0
r 0
2
0.1 -0.05
100 0o
- wm 100
= a5
0 == 0 . 0
o >

)

id

MULTIGRID method

Higher accuracy and faster convergence is achieved by using the MULTIGRID method,
where a series of coarser grids are built by interpolating residuals and field variables from
finest grid (restriction). Iterations are then applied to these grids (smoothing), to find
corrections at different wavelengths to the correct solution on the finest grid. The
corrections are then interpolated back to finer grids (prolongation).

2D multigrid structure

Types of cycles

2D Poisson’s equation

restriction

Finest (principal) grid

7 - -4 B - Z7
P o i o o s o v - v - o
111111111111 v o v

v
LTZZ va ey ==

e ——— 24 x 16 cells
- £ 7 25 x 17 nodes

Level 2 /7/7/*///7;7/7// y g

L
L L e o o o L v

Z 2 7 Z ///// a4
Z 7 7 7 7 7 7 12x8cells
13 x 9 nodes
|ntermeo|aze grids

Y

7:5nodes

Level / /
ya

Coarsest (last) grid

Ix2cells
4 x 3 nodes

prolongation

V-cycle Level 1
Level 2
Level 3

Level 4

F-cycle

W-cycle

Level1

Level 2

Level 3

Level 4

sawtooth-cycle

10 iterations 1 Vecycle =10 iterations

x10°

w02

>
—
S,

residuals

30 itarations
5 3 V.cycles = 30 Iterations

*

6 V-cycies = 50 llmnons

rosuduals =

60 iterations

»*

- —_
. =N
*

—

- O

residuals

40

20 20
12 Vcycles =120 Rerations

120 Iterations

10" x10

- o,
]
h]
k- =
g 0 @0
(]
40 - P
20 R ¢

o
=

(a) ?932?9 ?leo'g:; (b) 49qu¢|:;)g::dos

4) Solve the system of linear equations

Two methods for solving a system of equations:
2) Direct methods:
- Gaussian elimination
- Gauss-Jordan elimination (find matrix inverse: A*x = b 2 x = b*A")

- Faster methods based on matrix reordering, factorization (i.e., decomposition:
LU decomposition, Cholesky decomposition), pivoting, etc.

Fastest direct solver nowadays:

- PARDISO (from Intel MKL libraries, http://www.pardiso-project.org/)
- MUMPS (open source, http://graal.ens-lyon.fr/MUMPS/)

- MILAMIN (open source, for FEM based codes, http://milamin.org/)

In MatLab, matrix inversion can be done by using:
S=inv(L)*R or better S=L\R;

Direct solvers do not require an initial guess and have accuracy to computer precision.
However, they are computationally expensive (memory © O(n?), operations « O(n?-n3),
where n is the number of unknowns), and therefore can be used only for 1D and 2D (or
small 3D) problems.

Numerical Modelling in
Geosciences

Practice
Numerical solution of PDEs

1) Define an Eulerian grid of nodal points...

... and save their space coordinates.

The grid can be uniform (equal distance between nodal points) or non-uniform, but points
need to be orthogonal. Lines connecting points are fictitious.

With this process we subdivide the continuous medium into discrete parts.

2D grid

1D grid

2 2

52) &2

d Y x

o () o (G o
[® 12§ 8 13}
X Xa X, Xg X,

—_—X

$Computational domain size
Xsize=3e+7;

ysize=3e+7;

$Number of nodes

xnum=101;

ynum=101;

$Grid spacing (only for uniform grids!!!)

xstp=xsize/(xnum-1);
ystp=ysize/(ynum-1);
$Coordinates
x=0:xstp:xsize;
y=0:ystp:ysize;

2D geometrical indexing:
Phi(3,4)

2D global indexing:
gi=i+N,*(-1)

Phi(15)

2) Assign input field variables to the nodes

In the case of 2D Poisson’s equation for gravity:
AD =41Gp(x,y)

we need to assign density to each node (+ Gravitational constant).

$Gravitational constant
G=6.672e-11;

$Fix density

rho1=5000;

rho2=3000;

$Density distribution

F 3500

rho=zeros (xnum, ynum) ;
for i=1:xnum
for j=1l:ynum
if (((x(1i)-xsize/2)"2+(y(j)-ysize/2)"2)"0.5<3e+6)
rho(i,j)=rho2;
elseif (((x(i)-xsize/2)"2+(y(]j)-ysize/2)"2)"0.5<6e+6)
rho(i,j)=rhol;

- 3000

F 42500

F 2000

else
rho(i,j)=0;
end

end

end

3) Apply PDEs and boundary conditions
to each nodal point.

Build matrices and vectors

A*x = b (standard notation)
or in Gerya’s book:

L*S = R (Left matrix*Solution = Right vector)

L is a n x n sparse matrix with coefficients
R is a n x 1 vector with the right-hand sides
S is a n x 1 vector with the unknowns

LSy + LSy + L3S;+..+ L, 1S, + 0,5, =R

Ly Sy + L1338, + Ly 383+ ...+ Ly p 1Sy + [p Sy = Ry

L3+ Ly 28+ Ly 383+ + Ly g p 1Sy + Ly g S, =Ry

Ln,lSI +L’L152 +Ln‘3S3 +...+ L S +Ln'nSn = RT)

na-1""n-1

$Left sparse matrix
L=sparse(xnum*ynum, Xnum*ynum) ;
$Right vector
R=zeros(xnum*ynum, 1) ;
$Square distances
x2=xstp”2;
y2=ystp"2;
$Apply FD to each node of the 2D grid
for i=1l:xnum
for j=l:ynum
$Global index
gi=j+(i-1)*ynum;

$Boundary nodes

if(i==1 || i==xnum || j==1 || j==ynum)

R(gi,1)=1le+8;
L(gi,gi)=1;

$Inner nodes

else
$Right part of equation
R(gi,1)=4*pi*G*rho(i,j);
$Left part of equation
$Phi (i,7)
L(gi,gi) = -2/x2-2/y2;
$Phi (i, j+1)
L(gi,gi+l) = 1/y2;
$Phi(i,j-1)
L(gi,gi-1) = 1/y2;
$Phi(i,i+1)
L(gi,gi+ynum) = 1/x2;
$Phi (i,i-1)
L(gi,gi-ynum) = 1/x2;

end

end
end

4) Solve the system of linear equations

Remember: A*x = b 2 x = b*A-"

or in Gerya’s book: L*S = R (Left matrix*Solution = Right vector) > S = R*L-"
This requires inversion of left matrix with all the coefficients.

In MatLab, matrix inversion can be done by using:

S=L\R;

$Solve by direct gaussian method
S=L\R;

$Load solution
Phi=zeros(xnum,ynum) ;
for i=1:xnum
for j=l:ynum
$Global index
gi=j+(i-1)*ynum;
Phi(i,j) = S(gi);
end

end

Homework

INTRODUCTION TO
Numerical Geodynamic

Read the chapter 3 and pp. 193-200 of textbook: -

Gerya, T. Introduction to numerical geodynamic modelling.
Cambridge University Press, 345 pp. (2010)

Exercise with Poisson’s equation by changing density
distribution and boundary conditions

