
Numerical Modelling in
Geosciences

Lecture 5
Numerical solution of PDEs

Example:

The same is valid for first
derivative in time:

Finite difference method
First derivative in space of function f(x) (1D case):

!f x() =
∂f x()
∂x

≈ lim
Δx→0

f x +Δx()− f x()
(x +Δx)− x()

∂T
∂x

≈
ΔT
Δx

=
T2 −T1
x2 − x1

∂T
∂t

≈
ΔT
Δt

=
T t+Δt −T t

Δt

T2	

Δx	

x	

∂T
∂x
"

#
$

%

&
'

x1	 x2	

Analytical vs Numerical
T1	

1)  Define an Eulerian grid of nodal points

2)  Assign input field variables to the nodes

3)  Apply PDEs and boundary conditions to each nodal point

4)  Solve the system of equations to get output field variables

How to apply finite differences

The grid can be uniform (equal distance between nodal points) or non-uniform, but points
need to be orthogonal. Lines connecting points are fictitious.
With this process we subdivide the continuous medium into discrete parts.

1) Define an Eulerian grid of nodal point

1D grid

2D grid

2D geometrical indexing:

Phi(3,4)

2D global indexing:
gi = i + Ni *(j-1)

Phi(15)

In the case of Poisson’s equation:

we need to assign function f to each node.

2) Assign input field variables to the nodes

ΔΦ =
∂2Φ
∂x2

+
∂2Φ
∂y2

+
∂2Φ
∂z2

= f

In the case of 1D Poisson’s equation:

Nodes 1 and 4: basic boundary nodes where boundary conditions are assigned

Nodes 2 and 3: basic internal nodes where Poisson equation is applied, and field variable
Phi and its second derivative are defined.

Nodes A, B and C: additional nodes where first derivative of field variable Phi is defined

The number of indipendent linear equations must be equal to the number of unknowns:

 # equations = # grid points * # of field variables = 4

3a) Apply PDEs and boundary conditions
to each nodal point.

ΔΦ =
∂2Φ
∂x2

= f

1D grid

In the case of 2D Poisson’s equation:

Nodes (1,j; 4,j; i,1; i,5): basic boundary nodes
where boundary conditions are assigned

All the others are basic internal nodes where
Poisson equation is applied, and the field variable
Phi and its second derivative are defined.

 # equations = # grid points * # of field variables = 20

2D grid

2D global indexing:
gi = i + Ni *(j-1)

ΔΦ =
∂2Φ
∂x2

+
∂2Φ
∂y2

= f

3a) Apply PDEs and boundary conditions
to each nodal point.

Boundary conditions

Dirichlet BC: specify the value of the solution on the boundary nodes

Example:

Neumann BC: specify the value of the derivative
of the solution on the boundary nodes

Example:

Very important in finite difference method:

For each output (unknown) field variable (e.g., P, T, vx, vy, etc.), we must assign a Dirichlet
BC to at least 1 node. This is required in order to compute finite differences from an initial
value.

€

∂Φ
∂x

≈
ΔΦ
Δx

= 4.2⇒Φ1 =Φ2 − 4.2 ⋅ Δx

Φ2	

Δx	

x	

∂Φ
∂x

#

$
%

&

'
(

x1	 x2	

Φ1	

€

Φ1 = 0

Build matrices and vectors

A*x = b (standard notation)
or in Gerya’s book:
L*S = R (Left matrix*Solution = Right vector)

L is a n x n sparse matrix with coefficients
R is a n x 1 vector with the right-hand sides
S is a n x 1 vector with the unknowns

Matrix L for 2D grid: 31 x 31 nodes

MatLab command: spy(L)

3b) Apply PDEs and boundary conditions
to each nodal point.

A*x = b

or in Gerya’s book:
L*S = R

Two methods for solving a system of equations:
 1) iterative (Jacobi, Gauss-Siedel iteration):
 define initial guess Si

current for each unknown,
 then find residual ΔRi.
 Update solution for each unknown Si

new by
 means of relaxation parameter 0<ϑi<1.
 In Jacobi àsimultaneous update at the end of the cycle
 In Gauss-Siedelàupdate during the cycle

4) Solve the system of linear equations

Iterate while
|ΔR|>req. accuracy	

Two methods for solving a system of equations:
 1) iterative (Jacobi, Gauss-Siedel iteration): because of the small memory consumption the
relatively small amount of operations, iterative solvers are commonly used for solving large
(3D) problems. However, the accuracy of the solution may be low and convergence may be
slow because of large differences in matrix coefficients (high condition number) and residuals at
wavelength longer than grid spacing.
Matrix preconditioning reduces the condition number and improve the convergence (APP-1b=x).
Otherwise…

2D Poisson equation (100 x 100)

4) Solve the system of linear equations

… MULTIGRID method
Higher accuracy and faster convergence is achieved by using the MULTIGRID method,
where a series of coarser grids are built by interpolating residuals and field variables from
finest grid (restriction). Iterations are then applied to these grids (smoothing), to find
corrections at different wavelengths to the correct solution on the finest grid. The
corrections are then interpolated back to finer grids (prolongation).

2D Poisson’s equation Types of cycles 2D multigrid structure

Two methods for solving a system of equations:
 2) Direct methods:

 - Gaussian elimination
 - Gauss-Jordan elimination (find matrix inverse: A*x = b à x = b*A-1)
 - Faster methods based on matrix reordering, factorization (i.e., decomposition:
 LU decomposition, Cholesky decomposition), pivoting, etc.

Fastest direct solver nowadays:
-  PARDISO (from Intel MKL libraries, http://www.pardiso-project.org/)
-  MUMPS (open source, http://graal.ens-lyon.fr/MUMPS/)
-  MILAMIN (open source, for FEM based codes, http://milamin.org/)

In MatLab, matrix inversion can be done by using:
S=inv(L)*R or better S=L\R;

Direct solvers do not require an initial guess and have accuracy to computer precision.
However, they are computationally expensive (memory ∞ O(n2), operations ∞ O(n2-n3),
where n is the number of unknowns), and therefore can be used only for 1D and 2D (or
small 3D) problems.

4) Solve the system of linear equations

Numerical Modelling in
Geosciences

Practice
Numerical solution of PDEs

… and save their space coordinates.
The grid can be uniform (equal distance between nodal points) or non-uniform, but points
need to be orthogonal. Lines connecting points are fictitious.
With this process we subdivide the continuous medium into discrete parts.

1D grid 2D grid

2D geometrical indexing:

Phi(3,4)

2D global indexing:
gi = i + Ni *(j-1)

Phi(15)

1) Define an Eulerian grid of nodal points…

In the case of 2D Poisson’s equation for gravity:

we need to assign density to each node (+ Gravitational constant).

ΔΦ = 4πGρ(x, y)

2) Assign input field variables to the nodes

Build matrices and vectors

A*x = b (standard notation)
or in Gerya’s book:
L*S = R (Left matrix*Solution = Right vector)

L is a n x n sparse matrix with coefficients
R is a n x 1 vector with the right-hand sides
S is a n x 1 vector with the unknowns

3) Apply PDEs and boundary conditions
to each nodal point.

Remember: A*x = b à x = b*A-1

or in Gerya’s book: L*S = R (Left matrix*Solution = Right vector) à S = R*L-1
This requires inversion of left matrix with all the coefficients.
In MatLab, matrix inversion can be done by using:
S=L\R;

4) Solve the system of linear equations

Homework

Read the chapter 3 and pp. 193-200 of textbook:

Gerya, T. Introduction to numerical geodynamic modelling.
Cambridge University Press, 345 pp. (2010)

Exercise with Poisson’s equation by changing density
distribution and boundary conditions

